
On-chain Identities 
and Credentials Technical Implementation

LTO NETWORK



Index

TECHNICAL IMPLEMENTATION

Transaction types
 Publish Certificate

Network addresses
 Signing with RSA and ECDSA
 Derived identities
 URI to address

Decentralized Identifiers
 Subject
 Credentials
 Certificates
 Cross-chain

Associations
 Endorsing certificates
 Alias
 Verified credentials

ì

1
1

3
3
4
5

7
7
7
8
8

9
9

10
10



P. 1

Transaction types

Publish Certificate

1

2

3

4

5

6

7

8.1

8.2

8.3

8.4

...

Length

1

1

32

2

L

4

4

1

2

2

P1

...

Field name

Transaction multiple version mark

Transaction type

Sender’s public key

Certificate length (L)

Certificate

Fee

Timestamp

Proofs version (1)

Proofs count

Proof 1 length (P1)

Proof 1

...

Type

Byte (constant, value=0)

Byte (constant, value=20)

PublicKeyAccount (Array[Byte])

Short

DER (Array[Byte])

Long

Long

Byte

Short

Short

ByteStr (Array[Byte])

...

LTO will introduce a new transaction type to publish X.509 certificates. 

Nodes must not only check the validity of the transaction but also of the 

certificate itself. Transactions with invalid certificates will be rejected.

Publishing a certificate doesn’t establish ownership to the signer of the 

transaction, nor does it establish any other kind of relationship between 

the publisher and the certificate. Proving ownership of the certificate can 

only be done with a private key that corresponds with the public key with-

in the X.509 certificate.

The transaction contains the certificate in binary (DER) format. The maxi-

mum length of a certificate is 65535 bytes.



P. 2

Transaction types

Unlike other transactions on LTO Network, the ‘Publish Certificate’ trans-

action doesn’t have a fixed fee. Instead, the fee is calculated based on 

the size of the certificate (in bytes). This is similar to how the tx fee of 

Data transactions is calculated on Waves.

The fee is 4 LTO + 1 LTO per kilobyte (rounded up).

LTO will publish all valid CA root and intermediate certificates of the 

Common CA Database on our public chain. This allows verification of 

the chain of trust. Anyone is able to publish missing root or intermediate 

certificates.

In case of revocation, we’ll issue a dispute association. 

LTO doesn’t dictate which certificates to trust. That’s up to the end-user 

and/or software vendor.

Root and Intermediate certificates



P. 3

Network addresses

RSA keys and signatures are significantly longer than those of 

ED25519. Signing with them would require creating new versions of 

each transaction type to accommodate the dynamic key and signa-

ture length.

LTO is opting for an alternative using the existing transaction data 

structures. Publishing an X.509 certificate will automatically create 

a smart account. The address is derived from the public key, but in a 

different way than with normal accounts.

Normally addresses are generated from the secure hash of the 

ED25519 public key

For certificate smart accounts, the address is calcu-

lated as

The sha256 hash of the RSA (or ECDSA) key can be 

used in the PublicKey field of the transaction, which 

requires a 32-bit value. The data structure of transac-

tions already accommodates custom size signatures 

through the Proofs field.

Signing with RSA and ECDSA

sha256(Blake2b256(ED25519_public_key))

sha256(Blake2b256(sha256(RSA_public_key)))



P. 5

An address on LTO is generated with the secure 

hash of the public key. For the address of a derived 

identity, HMAC is used instead of a regular sha256 

to calculate the secure hash. The HMAC secret is a 

generated nonce.

For certificate smart accounts, derived addresses are 

calculated as

It’s recommended to use a random 32-byte value as 

nonce. If the nonce is sequential, it’s trivial to gen-

erate a list of derived identities for an account. This 

might be a privacy concern.

Derived identities can’t be used to sign transactions 

on the LTO Network public blockchain.

Proving an address belongs to you, for verifiable cre-

dentials, is similar to the normal procedure. You sign 

a message using your private key. The nonce is pro-

vided together with the public key, so the address 

can be calculated.

The DID url must include the nonce as query param-

eter.

Derived identities

sha256_hmac(blake2b256(ED25519_public_key), nonce)

sha256_hmac(blake2b256(sha256(RSA_public_key)), nonce)

Network addresses



P. 5

Recursive nonce
The method to calculate the secure hash for a de-

rived identity may be used recursively. For federat-

ed identities, the HMAC secret is generated using an 

identity id, plus the nonce.

There are no restrictions on the format of the user 

id. It can be a sequential id, a UUID or any string. To 

calculate the address, the public key, the user id, and 

the nonce must be provided.

The DID url must include the user id and the nonce as 

query parameters.

sha256_hmac(blake2b256(public_key), sha256_hmac(id, nonce))

did:lto:{address}?id={id}&nonce={nonce}

did:lto:{address}?nonce={nonce}

Network addresses



P . 6

It’s possible to create an LTO address for any URI. 

There is no public key associated with this address. 

It can only act as an endpoint. The secure hash for 

calculating the address is simply the sha256 hash

A query parameter for versioning could be used in-

stead. But this would be less secure, because it’s 

prone to length extension attacks.

Anybody can make a claim about this URI through 

associations. Depending on your use case, configure 

the LTO identity node to only index relevant associ-

ations.

For public DIDs, versioning can be done through a 

query parameter.

For private data exchange, we use HMAC with the 

version as secret. The version should be random and 

at least 32 bytes.

URI to address

sha256(uri)

sha256_hmac(uri, version)

Network addresses



P. 7

Decentralized Identifiers

The DID of a subject on LTO Network is simply the 

address on LTO Network. This may be the public ad-

dress of the holder or a derived address.

The DID of a verifiable claim relative to the subject 

address.

The cid is a sha256 hash of the (unsigned) verifiable 

credentials. The DID contains a base58 encoded val-

ue of this id.

Subject

Credentials

did:lto:{address}

did:lto:{address}/credentials/{base58:cid}



P. 8

X.509 certificates have a DID on LTO network, which 

is relative to the address of the smart account.

The DID of an external blockchain can be indexed 

and used on LTO Network. The DID must be generat-

ed from the public key.

A cross-chain DID is equivalent to the DID on the 

external blockchain. The type is prefixed with lto: to 

specify the network

The fingerprint is the sha256 hash of the certificate 

in DER format. The DID contains the base58 encoded 

value of the fingerprint.

When querying the address on an LTO identity node, 

the lto: prefix may be omitted.

Certificates

Cross-chain

did:lto:{address}/certs/{base58:fingerprint}

did:lto:ethr:0xf3beac30c498d9e26865f34fcaa57dbb935b0d74

Decentralized Identifiers



P. 10

Associations

Any account can make a claim about a published 

X.509 certificate through associations.

The association recipient is the smart account ad-

dress, calculated from the public key.

Multiple certificates can be published for a single ac-

count. Therefore it’s required to supply the certificate 

fingerprint as the association hash. The fingerprint is 

the sha256 hash of the certificate in DER format.

If a single address both endorses and disputes a cer-

tificate, the dispute should take precedence.

Endorsing certificates

Association type

0x20

0x21

Hash

Certificate fingerprint

Certificate fingerprint

Meaning

Endorse certificate

Dispute certificate



P. 10

LTO allows declaring an account as an alias through 

associations. Alias addresses will be combined into a 

single DID document, with multiple signing methods.

For verifiable credentials, the holder has a signed 

copy. The issuer must also create an association on 

the blockchain.

Creating an alias requires an alias association trans-

action from both accounts to each other.

The cid is the sha256 hash of the (unsigned) cre-

dentials.

Alias

Verified credentials

Association type

0x01

Association type

0x10

Hash

N/A

Hash

cid

Meaning

Alias

Meaning

Verified credentials

Decentralized Identifiers


